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Abstract Radiation of an electric dipole (quantum
emitter) in vicinity of optical structures still attracts great
interest due to emerging of novel application and
technological advances. Here we review our recent work
on guided and radiation modes of electric dipole and
optical fiber system and its applications from single photon
source to metadevices. We demonstrate that the relative
position and orientation of the dipole and the core diameter
of the optical fiber are the two key defining factors of the
coupled system application. We demonstrate that such a
coupled system has a vast span of applications in
nanophotonics; a single photon source, a high-quality
factor sensor and the building block of metadevices.

Keywords dipole source, optical fibers, single photon
source, whispering gallery modes, electric and magnetic
response

1 Introduction

Radiation of a dipole or a quantum emitter in vicinity of
optical structures is a fundamental field of research that has
been extensively studied both theoretically and experi-
mentally [1–3] and Ref. therein, and utilized in many
applications including different sensing mechanisms [4–6],
photonic band-gap devices [7,8], nonlinear optics [9,10],
superscatteres [11], antenna [12–14], metadevices [15,16].
The field still attracts significant interests, first, due to
technological advances that have led to new possibilities
for fabricating nanoscale optical structures that can be
doped or coated with nanoparticles with variety of different
optical properties. Secondly, there are now advanced

techniques to excite “optical modes” using phase-matched
optical waveguides, and fluorescence emission of incor-
porated or coated nanoparticles. Finally, novel applications
of the concept of dipole-optical structures are emerging.
Optical fibers are one of the important class of optical
structures since they provide two types of interactions;
dipole-guided and dipole-radiation modes interactions
[2,17,18]. Each of these interactions has unique and
distinct properties, making them suitable for different
applications.
Here, we summarize our work on the interaction of

optical fibers with a point source, i.e., an electric dipole in
classical regime and quantum emitter in quantum
mechanics. We demonstrate that such a coupled system
has a vast span of applications; a single photon source [19–
21], a high-quality factor sensor [2] and can be the building
block of metadevices [22,23]. We first give a brief
summary of the theory of dipole-fiber system in
Section 2. This is followed by a summary of the
experimental efforts, in Section 3, to implement a practical
dipole-fiber system in which a step index tellurite optical
fiber is doped with diamond nanoparticles with nitrogen
vacancy centers in order to develop a guided single photon
source. In Section 4, we focus on the origin and properties
of radiation modes of an optical fiber. Using the theory
reviewed in Section 2 and numerical simulations, we show
how the radiation of a dipole can be coupled into these
radiation modes. In particular we show that higher order
radiation modes have large Q, and high sensitivity to the
refractive index of the environment around the optical
fiber. In Section 5, the lowest order radiation modes are
expanded in terms of their electric and magnetic dipole
contributions. It is shown theoretically that for a certain
dipole orientation, the radiation modes resemble strong
enhanced magnetic responses. Such a strong magnetic
response can be used as building block of metamaterials
and metadevices.
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2 Theory

The interaction of a dipole with an optical fiber, in general,
can be described using Green’s function [24] or modal
decomposition method [2,18]. We use modal decomposi-
tion method since it allows us to separately consider the
contribution of guided and radiation modes. We model the
point source, which can be an electric transition in an atom
or electric dipole source, with a dipole moment p0
oscillating with a frequency ω. The fiber is modeled as
an infinitely long dielectric cylinder of radius rco and
refractive index nco surrounded by an infinite region of air
cladding (ncl ¼ 1). In the examples presented in the
following sections, we have considered tellurite glass as
the core material (nco � 2:025) and l ¼ 700 nm as the
operating wavelength of dipole emission, which represents
the single atom emission of diamond centers [19]. The total
field emitted by the dipole and optical fiber system can be
written as [17,18]

Eðx,y,zÞ ¼
X

j
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where aj, a�ðQÞ and ejðx,yÞ, e�ðx,y,QÞ are coupling
coefficients and modal vector fields for forward guided
and radiation modes, respectively, j and n are respectively
the azimuthal guided and radiation mode indices, βj’s are
the corresponding propagation constants, Q ¼ ðD=2Þ
ðk2n2cl – β2Þ1=2, D is the core diameter, k ¼ 2π=l, and BK
represents the contribution of backward guided and
radiation modes. Note that the guided and radiation
modes are orthogonal to each other and the discrete and
continuous values of the propagation constants β of these
modes, respectively, are kncl£βj£knco for guided modes

and 0£β£kncl for radiation modes. The coupling
coefficients aj and a� are [17,18]
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A –1ðej,v � h*j,vÞ⋅ẑdA is the normaliza-

tion term. The power captured in each guided and radiated
modes are Pj ¼ jajj2Nj and P� ¼ ja�j2N� , respectively.
Hence the total emitted power of the dipole-waveguide
system is the sum of the power captured into all guided and
radiation modes as follows [2,17,18]:
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3 Photon collection platform for quantum
mechanics

Quantum-base technology has been identified as a
potential disruptive technology of twenty first century. A
building block of such a technology consists of devices
that operate at quantum-classic interface. One important
class of these devices combine quantum emitters with
photonic structures. They allow quantum information to be
integrated to photonic modes of the structure, which in turn
allows read-in, read-out connections with the quantum
emitters.
In recent years, diamond nanocrystals containing

nitrogen vacancy (NV) centers have become one of the
important platforms to exhibit room-temperature quantum
effects [19]. The fluorescence emission of these centers
exhibits a characteristic single photon statistic. We have
demonstrated, with careful fabrication process [19–21],
that diamond nanoparticles with NV centers can be doped
within tellurite glass structure, which can then be pulled
into optical fibers, see Fig. 1(a). Exciting the NV centers

Fig. 1 (a) Diamond optical fiber excited at the endface using 700 nm laser. (b) Background corrected measured second order
autocorrelation function (blue circles) of a single NV–center embedded in the tellurite optical fiber. The solid red line represents a single
exponential fit of the photon statistics Both parts adapted from Ref. [19]
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within the optical fiber and measuring and examining the
statistical characteristics of their fluorescence emission
show the antibunching behavior, characteristic of single
photon emission, see Fig. 1(b). The success in embedding
NV centers within optical fibers without losing their single
photon emission properties is an important step toward a
hybrid quantum-classic platform. The NV centers within
optical fibers can be excited through guided modes of the
fiber and their fluorescence single photon emission can
then be captured into guided modes. This forms a robust
configuration to develop guided single photon sources for
quantum applications.
We can use the theoretcial model discussed in Section 2

to study and enhance the collection efficiency into the
guided modes of the optical fiber [18]. The fraction of
power coupled into guided modes of the optical power can
be determined from the first term (Pj) in Eq. (3). The total
power captured in guided modes by a dipole located in the
center (labeled ‘center’) and at the core-cladding interface
(labeled ‘interface’) of a tellurite fiber is shown in Fig. 2.
The captured power has been normalized to the total power
emitted by a dipole in bulk diamond. We find that the
power captured into the guided modes of the fiber depends
on the location of the source in the core and can be greater
than the total emitted power of a dipole in bulk diamond. In
generally, for many core diameters and dipole positions,
the power captured is greater than 20% of the power
emitted in bulk diamond and it is typically higher for a
radially oriented dipole (~50%–60%) [18]. The disconti-
nuities in the plots are due to the appearance of new guided
modes as the core diameter is increased.

4 Ultra-sensitive platform for sensing

In Section 3, we considered photon collection into the
guided modes of the optical fiber and studied the effect of
dipole orientation and position on the collection efficiency.
In this section, we investigate the effect of dipole emission
into radiation modes of the optical fiber [2,22]. We

consider dipole sitting at the core-cladding interface, and
we theorectically study the role of dipole orientation on the
radiation modes, where strong resonance peaks are
observed due to formation of whispering gallery modes
(WGMs) at the fiber cross section.
The total radiated power of the coupled system is

calculated using Eq. (3), where the total power is the sum
of radiation modes of the fiber integrated over the
continuous propagation constant of radiation modes. It is
worth mentioning that similar to guided modes, radiation
modes are also formed by the superposition of TE- and
TM-like modes (relatively small longitudinal electric and
magnetic fields, respectively) [17]. The contribution of
each of these TE- and TM-like modes to the total power
depends on the dipole orientation [22], shown in Fig. 3.
The relative contribution can be explained in terms of the
excitation fields, using Eq. (2). For example, a z-oriented
dipole couples strongly into the modes with a large z-
component electric field, i.e., TM radiated modes of the
fiber. Note that the radiated power is normalized to the total
radiated dipole power from the telluride glass, which
represents the Purcell factor of the coupled system. The
position of these peaks overlaps with the position of the
TE-WGM resonances (blue triangles) of a two-dimen-
sional (2D) microdisk calculated independently by solving
Maxwell’s equations for a 2D circular disk with a diameter
equal to that of the fiber.
The insets in Fig. 3 represent the normalized fields

(magnetic for Figs. 3(a) and 3(b) and electric for Fig. 3(c))
at the cross section of the fiber at the position of (8,0)
WGM for each case. These insets are calculated using
commercially available numerical software CST micro-
wave studio. We demonstrated that the radiation peaks are
due to contribution from a very small range of propagation
constants close to zero implying that there is a very small
contribution from non-transverse propagating modes
(skew modes) and it almost radiated in the transverse
plane. We also demonstrated that Q-factor and modal
volume both increase exponentially as functions of core
diameter, the Q-factor increases faster, which results in an

Fig. 2 Power captured into the guided modes vs. core diameter for a tellurite core and air clad fiber excited by an electric dipole emitting
at 700 nm in the core center (red) and on the cladding (blue) interface. (a) Radially, (b) azimuthally, and (c) longitudinally oriented dipole.
Power is normalized to the total power emitted in a bulk diamond material. All adapted from Ref. [18]
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exponential increase of the Purcell factor similar to what
has also been observed in two dimensional planar
microcavities [2].
High Q-factors of the radiation peaks of the dipole-fiber

system indicates that this configuration can also be used for
refractive index sensing applications. We demonstrated
that the sensitivity in this coupled system increases
exponentially for higher order resonance modes and can
be used as a platform for ultra-sensitive refractive index
sensing (possibility of detecting δn � 5� 10 – 10 at (29,0)
resonance peak) [2]. The distinguished point of the dipole-
fiber system from other refractive index sensors (micro-
capillaries) is the selective coupling of a dipole emission to
those WGMs that have almost zero skew components (b =
0) [2].

5 A new platform for metadevices

In Section 4, we considered the effect of dipole emission
into radiation modes of the optical fiber, where strong
resonance peaks are observed due to formation of WGMs
at the fiber cross section [2,22]. In this section, we reveal
that a dipole placed near an optical fiber can produce strong
magnetic response. We focus on the first radiation peak of
coupled system and theorectically demonstrate that the
dipole orientation determines the nature of the resonance
response (electric or magnetic) of the system [22,23]. This
nanophotonic system opens up new possibilities to develop
low-dimensional nanodevices with enhanced magnetic
response.
The contribution of each of these TE- and TM-like

modes into the total power of the first peak depends on the

dipole orientation, shown in Fig. 3. For azimuthally and
longitudinally oriented dipole emission there exist strong
TM and TE-like modes contribution respectively, while for
radially oriented dipole both TE and TM have relatively
strong contribution and the relative ratio dependent of the
refractive index of the core [23]. To determine the nature of
the first resonance, we used the electromagnetic multipole
expansion and decomposed the fields radiated in terms of
electric and magnetic multipoles. Once the radiated/
scattered electric field is known, the following equations
can be used to determine the decomposition coefficients
[25,26]:
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where aEðl,mÞ, and aMðl,mÞ respectively represent the
amplitude of electric and magnetic ðl,mÞ mulitpoles, Xlm

and hð1Þl are the normalized vector spherical harmonics and
the spherical Hankel functions of the first kind, respec-
tively, where l and m are respectively the degree and order
of the harmonics. Also E0 and Es are respectively the
excitation and scattered/system electric field, and k is free

Fig. 3 Normalized radiated power (total, TE and TM) of a coupled system when excitation is oriented (a) radially, (b) azimuthally, and
(c) longitudinally. Power is normalized to the total power emitted in a bulk tellurite glass. The position of the resonances of 2D TE- and
TM-WGMs is shown respectively with blue and red triangles. The insets represent the normalized magnetic field ((a) and (b)) and electric
field ((c)) of (8,0) WGM for each case, which is the peak just before 1.2 mm in each case. Adapted from Ref. [22]
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space wavevector. Using decomposition, we have demon-
strated that the first peak of azimuthally oriented dipole,
which has mainly TM-like component, has a strong
magnetic dipole response aMð0,1Þ, while the other two
orientations have electric dipole or higher order multipoles
(in case of radial electric dipole). Once the multipole
coefficients are determined, one can easily calculate the
relative contribution of each decomposed component in
total energy of the system as follows [25]:

CE,Mðl,mÞ ¼ πð2l þ 1ÞjaE,Mðl,mÞj2=ðk2WsÞ, (6)

where Ws is the total radiated energy in the system. The
relative contribution of each decomposed component in
total energy of the system are shown in the insets of Fig. 4.
For a longitudinal dipole excitation, the energy couples
predominantly in the CEð1,0Þ component; representing the
system behaves as an enhanced electric dipole along. For a
radial dipole excitation, most of the energy also couples
into electric mulitpoles (dipole CEð1,1Þ and quadrupole
CEð2,0Þ). This is while for an azimuthal dipole excitation
there exist a strong contribution (more than 75%) from
CMð1,0Þ, i.e., a magnetic dipole moment. This implies that
the electric response of the system is suppressed
preferentially while its magnetic response is enhanced
(more than 2 orders of magnitude) [22]. This strong
magnetic response is observed in a system with a relatively
moderate refractive index. We believe these results will
pave the way to developing novel optical fiber devices with
a large induced magnetic response.

6 Conclusion

Here, we summarized our work on the interaction of
optical fibers with point source, i.e., electric dipole or
quantum emitter. We explained the theoretical modeling
used to calculate power coupled into guided and radiation

modes of the coupled system followed by three different
application of this system depending to the relative
position and orientation of the dipole and the core diameter
of the optical fiber. We demonstrated that such a system
can be a guided single photon source when the optical fiber
is doped with diamond nanoparticles, a platform for ultra-
sensitive refractive index sensing (possibility of detecting
δn � 5� 10 – 10) due to the excitation of high quality
factor WGMs, and a platform for developing novel optical
fiber based metadevices with a large induced magnetic
response.
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